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Introduction -1 

 
  :Introduction to Communication Engineering   1-1     

 
   The principle objective of a communication system is to transmit information signals from 
   one point to another . 
   The information signals may be the result of a voice message , a T.V. picture ,  a meter       
    reading , or may take on a variety of other formats depending on the specific application . 
    Communication Engineering involves the analysis , design , and fabrication of an               
    operating system that performs the communication objective . 

 
 :Functional Elements of a Communication System  2-1    

  
   Fig 1.1 shows a commonly used model for a single- link communication system . Although 
   it suggests a system for communication between two remotely located points , this block     
   diagram is also applicable to remote sensing systems , such as radar or sonar , in which the 
   system input and output may be located at the  same site .  
   Regardless of the particular application and configuration , all information transmission      
   systems involve three major subsystems : 
    -a transmitter , the channel , and a receiver .  
  We will now discuss briefly each functional element shown in Fig. 1-1 . 

 
 :Input Transducer     

   The wide variety of possible sources of information results in many different forms for       
   messages . Messages may be analog or digital . The message produced by a source must be 
   converted by a transducer to a form suitable for the particular type of communication          
   system employed .For example, in electrical communications, speech waves are converted  
   by a microphone to voltage variations .Such a converted message is referred to as the          
   message signal .  

 
:Transmitter    

 
   The purpose of the transmitter is to couple the message to the channel .  
   It is often necessary to modulate a carrier wave with the signal from the input transducer .   
   Modulation is the systematic variation of some attribute of the carrier,  
   such as amplitude , phase , or frequency , in accordance with a function of the message       
   signal . 
   There are several reasons for using a carrier and modulating it . Important  ones are : 
  (1) for ease of radiation , (2) to reduce noise and interference , (3) for channel assignment ,  
  (4) for multiplexing or transmission of several messages over a single channel , and (5) to    
  overcome equipment limitations .                                     
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 :Channel     

                                                                                      
   The channel can have many different forms ; the most familiar is the channel that exists      
   between the transmitting antenna of a commercial radio station and the receiving antenna   
   of a radio . In this channel , the transmitted signal propagates through the atmosphere , or    
   free space , to the receiving antenna . 

 
: Other forms of channels are     

  
   - Transmission lines (such as open two- wire systems and co-axial cables) .  
   -Optical fiber channels .                                                                                         
   - Guided electromagnetic – wave channels  .  
                                                       
   All channels have one thing in common : the signal undergoes degradation from transmitter 
   to receiver . This degradation results from noise and other undesired signals or interference 
   but also may include other distortion effects as well, such as fading signal levels, multiple   
   transmission paths, and filtering  . 

 
:Receiver    

 
   The receiver's function is to extract the desired message from the received signal at the       
   channel output and to convert it to a form suitable for the output transducer . Although        
   amplification may be one of the first operations performed by the receiver , where the         
   received signal may be extremely weak , the main function of the receiver is to demodulate 
   the received signal . 
  Often it is desired that the receiver output be a scaled , possibly delayed , version of the       
  message signal at the modulator input .  
  

:Output Transducer     
 

    The output transducer completes the communication system . The device converts the        
    electric signal at its input into the form desired by the system user. The most common        
    output transducer is a loudspeaker . There are many other examples , such as tape               
    recorders, personal computers, meters , and  cathode – ray tubes.                                          
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                                                                    Carrier                           Additive noise , interference, 
                                                                                                distortion resulting from band-                            
                                                                                                limiting and nonlinearities , 
                                                                                                switching noise in networks, 
                                                                                               electromagnetic discharges. 
                                                                                                       

 
 

Fig. 1-1The Block Diagram of a Communication System .  
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2. Signals and Systems  
2-1 Introduction : 
 
Signals are time-varying quantities such as voltages or current . 
A system is a combination of devices and networks (subsystems) chosen to 
perform a desired function .Because of the sophistication of modern 
communication systems , a great deal of analysis and experimentation with trial 
subsystems occurs before actual building of the desired system . Thus the 
communications engineer's tools are mathematical models for signals and 
systems . 
 
2-2Classification of Signals: 

 
2-2-1 Continuous-time and discrete-time signals 
 
By the term continuous-time signal we mean a real or complex function of time 
s(t), where the independent variable  t  is continuous. 
 
If t is a discrete variable, i.e., s(t) is defined at discrete times, then the signal 
s(t) is a discrete-time  signal. A discrete-time signal is often identified as a 
sequence of numbers ,denoted by {s(n)}, where n is an integer. 

 
2-2-2 Analogue and digital signals : 
 
If a continuous-time signal s(t) can take on any values in a continuous time 
interval, then s(t) is called an analogue signal. 
If a discrete-time signal can take on only a finite number of distinct values, 
{s(n)}, then the signal is called a digital signal. 

 
2-2-3 Deterministic and random signals : 
 
Deterministic signals are those signals whose values are completely specified 
for any given time. 
 
Random signals are those signals that take random values at any given times. 
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2-2-4 Periodic and nonperiodic signals : 
 
A signal s(t) is a periodic signal if s(t) = s(t + nT0), where T0 is called the 
period and the integer n > 0. 
 
If s(t) ≠ s(t + T0) for all t and any T0, then s(t) is a nonperiodic or aperiodic 
signal. 
 
2-2-5 Power and energy signals : 
 
A complex signal s(t) is a power signal if the average normalized  power P is 
finite, where 

 
and s*(t) is the complex conjugate of s(t). 
A complex signal s(t) is an energy signal if the normalized energy E is finite, 
where 

   
In communication systems, the received waveform is usually categorized into 
the desired part, containing the information signal, and the undesired part, 
called noise. 
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2-3 Some Useful Functions : 
 
a: Unit impulse function : 
The unit impulse function, also known as the Dirac delta function, δ(t), is 
defined by :   
      

             ∫
∞
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b: Unit step function  : 
The unit step function u(t) is : 
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 and the unit step function is related to the unit impulse function by : 
    

           and           
 
c: Sampling function : 
A sampling function is denoted by : 
 

        
        

  
  
d: Sinc function : 

 
   A sinc  function is denoted by : 
        

    
Hence, 
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e: Rectangular function : 

 
  A single rectangular pulse is denoted by : 

 

               
      

f: Triangular function : 

           
  

2-4 Other Useful Operations : 
 
a; Cross-correlation : 
The cross-correlation of two real-valued power waveforms s1(t) and s2(t) is 
defined by : 

             
If s1(t) and s2 (t) are periodic with the same period T0, then 

             
    

The cross-correlation of two real-valued energy waveforms s1(t) and s2(t) is 
defined by :  
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Correlation is a useful operation to measure the similarity between two 
waveforms. To compute the correlation between waveforms, it is necessary to 
specify which waveform is being shifted. In general,  
R12( τ) is not equal to R21( τ), where 
 
                   R21( τ) = <s2(t) s1 (t+ τ)>. 

  
    The cross-correlation of two complex waveforms is :  
                     R12( τ) = <s1*(t) s2(t+ τ)>. 
 
b: Auto-correlation : 

 
The auto-correlation of a real-valued power waveform s1(t) is defined by : 

            
If s1(t) is periodic with fundamental period T0, then 

              
The auto-correlation of a real-valued energy waveform s1 (t) is defined by : 

               
 
The auto-correlation of a complex power waveform is : 
 
                         R11( τ) = <s1*(t)s1 (t+ τ)>. 
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c: Convolution : 
The convolution of a waveform s1(t) with a waveform s2(t) is given by 

              
where * denotes the convolution operation. The above equation is obtained by : 
1. Time reversal of s2(t) to obtain s2(- λ). 
2. Time shifting of s2(- λ) to obtain s2[-( λ-t)]. 
3. Multiplying s1 ( λ) and s2 [ - ( λ- t)] to form the integrand   s1( λ) s2[-( λ-t)]. 
 

Convolution of a rectangular waveform : .12Example      

                      
 with an exponential waveform 

                     

  
  
 

Convolution of a rectangular waveform and an exponential waveform. 
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: Review of Fourier Series 5-2 
  

2-5-1 The Time-Frequency Concept:   
Consider the following set of time functions s(t) = {3A sin ω0 t , A sin 2ω0t} . 
We can represent these functions in different ways by plotting the amplitude 
versus time t, amplitude versus angular frequency ω, or amplitude versus 
frequency f.  
 

 
 
Figure 2.1 (a) Amplitude-time plot, and (b) amplitude-angular frequency plot. 
 
ω0 = 2π/T0 is called the fundamental angular frequency and ω2 = 2ω0 is called 
the second harmonic of the fundamental. In general, ωn = nω0 is said to be the 
nth harmonic of the fundamental, where n > 1. 
In communication engineering we are interested in steady-state analysis much 
of the time. 
The Fourier series provides a useful model for analysing the frequency content 
and the steady-state network response for periodic input signals. 

  
  

2-5-2 Trigonometric (Quadrature) Fourier Series : 
A periodic time function s(t) over the interval    

                              
  

may be represented by an infinite sum of sinusoidal waveforms 
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where T0 is the period of the fundamental frequency f0 and f = 1/T0. This is 
called the trigonometric (quadrature) Fourier series representation of the time 
function s(t). The coefficients an and bn are given by : 

  
and 

  
The choice of a is arbitrary, and it is usually set to 0. 
Many forms of the trigonometric Fourier series may be written. For example, 

  

  
  

is commonly used. The coefficients a'n and b'n are given by : 
  

  
and 
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Example 2.2 : Find the trigonometric Fourier series for the periodic time 
function s(t) shown in Figure 2.2. 

  

  
 

Figure 2.2 A periodic rectangular waveform. 
  

           
  

                         
  

Therefore , 
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2-5-3 Exponential (Complex or Phasor) Fourier Series : 
  

The time function s(t) may be represented over the interval 

              
 
by the equivalent exponential (complex or phasor) Fourier series 
 

  
 
where the coefficients cn are given by : 
 

  
 
c0 is equivalent to the dc value of the waveform s(t). 
cn is, in general, a complex number. Furthermore, it is a phasor since it is the 
coefficient of   ejnω0t . 
The complex Fourier series is easier to use for analytical problems. 
Many forms of the complex Fourier series may be written. For example, 

 

  
  

is commonly used. The coefficients c'n are given by : 
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Example 2.3:  Find the complex Fourier series for the periodic time function 
s(t) shown in Figure 2.2. 

    
Therefore,    

  

         
 
The frequency spectrum is shown in Figure 2.3. 

  

  
  

Figure 2.3 Frequency spectrum of a periodic rectangular waveform. 
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Figure 2.4 shows the effect on the frequency spectrum of smaller τ  
  
  

  
  
  

Figure 2.4 Effect on frequency spectrum of smaller τ. 
  

If the bandwidth B is specified as the width of the frequency band of a 
waveform from zero frequency to the first zero crossing, then B = 1/τ Hz. 
If we let the pulse width τ in Figure 2.4 go to zero and the amplitude Am go to 
infinity with Amτ = 1, all spectral lines in the frequency domain have unity 
length. Figure 2.5 shows the periodic unit impulses and the frequency spectrum 
of the periodic unit impulses . The bandwidth becomes infinite. 

  
  
  
  
  



17 
 

  
  

Figure 2.5 (a) Periodic unit impulses, and (b) frequency spectrum. 
  

Properties of the Complex Fourier Series : 
 
1. If s(t) is real, then        cn= c*-n 
         
2. If s(t) is real and even, s(t) = s(-t) , then     Img[cn] = 0  
 
3. If s(t) is real and odd, s(t) = - s(-t) , then    Re[cn] = 0  
4. The complex Fourier-series coefficients of a real waveform are related to the 
quadrature Fourier-series coefficients by : 

  
  

represents the amplitude spectrum and 

  
  

represents the phase spectrum of the real waveform. 
  
  
  

The equivalence between the Fourier series coefficients is demonstrated in 
Figure 2.6. 
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Figure 2.6 Fourier series coefficients, n > 1. 
  

Parseval’s Theorem for the Fourier Series : 
  

Parseval’s Theorem for the Fourier series states that, if s(t) is a periodic signal 
with period T0, then the average normalized power (across a 1Ω resistor) of s(t) 
is : 

       
  

If s(t) is real, |s(t)| is simply replaced by s(t). 
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:Problems  
  1- Find the F.S. expansion of the signal defined by : 
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     and plot its amplitude spectrum . 
 
2-What is the F.S. expansion of the periodic signal  whose definition in    
 one period is : 
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       Plot its amplitude spectrum . 
  
3-What percentage of the total power is contained within the first zero      
     crossing of the spectrum envelope for s(t) as shown in the following figure. 
      Assume that    Am= 1 v , T0= 0.25 msec. , and τ = 0.05 msec 
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  :Fourier Transform. 6-2  
 

  
In communication systems, we often deal with non-periodic signals. An 
extension of the time-frequency relationship to a non-periodic signal  s(t) 
requires the introduction of the Fourier Integral. A nonperiodic signal can be 
viewed as a limiting case of a periodic signal, where the period T0 approaches 
infinity. As T0 approaches infinity, the periodic signal will eventually become a 
single non-periodic signal. This is shown in Figure 2-7 . 
 

 

  
  

Figure 2.7 Effect on frequency spectrum of increasing period T0 . 
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The normalized energy of the non-periodic signal becomes finite and its 
normalized power tends to zero. 
Consider the amplitude spectrum of a periodic waveform as shown in Figure  
2-8 . 

 

 
 
 

Figure 2.8 Amplitude spectrum of a periodic time function. 
 

Let ωn = nω0 and Δω = ωn+1 -  ωn = 2π / T0  .  The Fourier series of a periodic 
waveform s(t) with period T0 can be written as : 
   

      
 
 and  

        
 
If T0 approaches infinity, ω0 goes to 0. The harmonics get closer and closer 
together. In the limit, the Fourier series summation representation of s(t) 
becomes an integral, cn becomes a continuous function S(ω), and we have a 
continuous frequency spectrum. In summary, as T0            ∞  , ∑ becomes ∫ , 
ωn becomes ω, and Δω becomes dω. We have : 
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and 

       
It is also very common to work in terms of frequency f, f = ω/2π, because 
spectrum analyzers are usually calibrated in hertz. Thus,  

       
and  

       
The functions s(t) and S(f) are said to constitute a Fourier transform pair, where 
S(f) is the Fourier transform of a time function s(t), and s(t) is the Inverse 
Fourier transform (IFT) of a frequency-domain function S(f). 
Shorthand notation expressed in terms of t and f :s(t)           S(f) 
Shorthand notation expressed in terms of t and ω : s(t)           S(ω) 
In general, S(f) is a complex function of frequency. 
 
In two-dimensional Cartesian form, S(f) can be expressed as : 
                  
                S(f) = X(f) + jY(f)  
 
In polar form, S(f) can be expressed as : 
 

           
Where  
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|S(f)| represents the amplitude spectrum and θ(f) represents the phase spectrum 
of s(t) . 
Example 2-4 : Find the spectrum of an exponential pulse 

                
 

            
 
Transforms of Some Useful Functions : 
1. Dirac Delta Time Function : 
 

            
 
              δ(t)            1 
Also, it can be shown that  δ(t-t0)                  e-j2πft

0    
 
2. Dirac Delta Frequency-Domain Function : 
 

         
 

1 δ(f)  
  

Also, it can be shown that  ej2πf0t               δ(f – f0) 
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Example 2.5 : Find the spectrum of a sinusoid : 
         
   v ( t) = A sin 2π f0 t = A(ej2πf0t – e-j2πf0t ) / 2j  
  
  
Since   ej2πf0t             δ(f – f0), we have 

             
 

 
 

Figure 2.9 Spectrum of the periodic function A sin 2πf0t  
 
  3. Rectangular, sin x/x, and Triangular Pulses : 

 
 

 
 

(a)                 
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  (b)                
 

 
 

( c ) 
 

Figure 2.10  Spectra of (a) rectangular, (b) sin x/x, and (c) triangular pulses. 
 
Observations: 
1. Figure 2.10-a - Spectrum spreads out as the pulse width T decreases. 
Bandwidth B = 1/T Hz and S(f) decreases as 1/f. 
 
2. Figure 2.10c - spectrum spreads out as the pulse width T decreases. 
Bandwidth B = 1/T Hz and S(f) decreases as 1/f2. 
The smoother the time-domain function, the more rapidly the spectrum 
decreases with increasing frequency, packing more frequency contents into a 
specified bandwidth. 
An inverse time-bandwidth relation always exists. 
Bandwidth plays a significant role in determining transmission rate. 
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Properties of Fourier Transforms : 
 

1. Symmetry (Duality) Property : 
  

s(t)           S(-f) 
2. Scaling Property : 

s(at)           )(1
a
fS

a
     

    3. Time Shifting (Time Delay) Property : 
          s(t – Td)               S(f) e-j2πfTd 

 
4. Frequency Shifting Property : 

 
           s(t) ej2πfct              S(f-fc) 

 
     5. Differentiation Property : 

    
             dn s(t) / dtn                 (j2πf)n S(f) 
 
Differentiation increases the high-frequency content of a signal. The derivative of an even 
function must be odd . Hence, the Fourier transform of the derivative of the function must 
be odd and imaginary. 

 
     6. Convolution Property : 
         
        s1(t) * s2(t)           S1(f) S2(f)     

 
     7.  If s(t) is real, then : 

    
                S(-f) = S*(f) 

 
        8. If s(t) is real, then : 
             
               |S(-f)| = |S(f)| 

and 
                 θ(-f) = -θ(f) 
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The following table shows Fourier transform properties for various forms of s(t) . 

 

 
 

Example 2.6: Use the scaling and real-signal frequency-translation properties to find the 
Fourier transform of a damped sinusoid 
 

            
From Example 2.4 we have : 

                      
 
Using the scaling property with a = 1/T, we get : 
 

                    
Using the real-signal frequency-translation property with θ = -π/2, we get: 

 

   
  
 

The sin ω0t factor causes the spectrum to move from f = 0 to f = ± f0 . 
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Parseval’s Theorem for the Fourier Transform and Energy Spectral Density : 
 
Parseval’s Theorem for the Fourier transform states that if s1(t) and s2(t) are 
two complex energy signals, then : 
 

        
 

If s1(t) = s2(t), then Rayleigh’s energy theorem states that the normalised 
energy is : 

 

                 
  
The energy spectral density (ESD) is defined for energy waveforms by: 
 

                               
 

Power Spectral Density  (PSD) and Wiener-Khintchine Theorem : 
 
PSD is a function showing the distribution of power in the signal as a function 
of frequency . 
The Wiener-Khintchine theorem states that the power spectral density and the 
autocorrelation function are Fourier transform pairs. 
 
     R22(τ)               P22 (f)  
 
Where P22(f) and R22(τ)  are  the power spectral density and the autocorrelation      
of a power waveform s2(t)  respectively . 
Furthermore, the average normalized power is : 
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The average normalized power of a power waveform is now related to the 
power spectral density. 
The power spectral density (PSD) for a power waveform s2(t) is : 
 

                         
 

where   S1(f) is the Fourier transform of the truncated waveform  s1(t)        
defined as :  

             
    

 and s1(t) is an energy waveform as long as T is finite. 
 
The power spectral density is always a real nonnegative function of frequency. 
It is not sensitive to the phase spectrum of the truncated waveform s1 (t). Thus, 
A sin 2πf0t  and A cos 2πf0t  have the same PSD because the phase has no 
effect on the power spectral density. 
  
Fourier Transform of Periodic Signals : 
 
So far we have used the Fourier series and the Fourier transform to represent 
periodic and nonperiodic signals, respectively. For periodic signals, we can use 
an impulse function in the frequency domain to represent discrete components 
of periodic signals using Fourier transforms. With this approach, both periodic 
and nonperiodic signals can be incorporated in a common Fourier-transform 
framework. 
 
Recall: 
             Aδ(t)            A 
            Aδ(t- t0)                Ae-j2πf t0 

           A              Aδ(f) 
             
      Aej2πf0t             Aδ(f- f0) 
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The complex Fourier series of a periodic signal is given by : 
 

                          
 
and the Fourier transform of s(t) is : 

                             
  

Example 2.7 : The complex Fourier series of a periodic rectangular waveform s(t) is : 
 

             
 

   Where :  

                               
 

  
  

 (a)  

  
(b)  

  
Figure 2.11 (a) A periodic rectangular waveform s(t), and  (b) the Fourier transform 

                                spectrum of s(t) . 
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Example 2.8 : A periodic impulse s(t) is : 
 

                             
 
 

 
 

(a) 
 

 
 

(b) 
Figure 2.12  (a) Periodic impulse s(t), and (b) Fourier transform spectrum of s(t). 
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2.7 Systems : 
 
A system is a mathematical model that relates the output signal to the input 
signal of a physical process. 
 

 
Figure 2.13 Representation of a system. 

 
 Classification of Systems : 

  
1. Linear and non-linear systems 
 
Let xi(t) and yi(t), i > 1, be input and output signals of a system, respectively. A 
system is called a linear system if the input x1(t) + x2(t) + ... + xi(t) + ... 
produces a response y1 (t) + y2 (t) + ... + yi(t) + ..., and  axi(t)  produces 
ayi(t)  for all input signals xi(t) and scalar a. This is known as the superposition 
theorem and a linear system obeys this principle. 
….. 

 

  
  

Figure 2.14 Linear system. 
  
In practice, it may be found that a system is only linear over a limited range of 
input signals. 
A non-linear system does not obey the superposition theorem. 
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2.Causal and non-causal systems : 
 
Let x(t) and y(t) be the input and output signals of a system. A causal 
(physically realizable) system produces an output response at time t1 for an 
input at time t0, where   

                                      
In other words, a causal system is one whose response does not begin before 
the input signal is applied. 
A non-causal system response will begin before the input signal is applied. It 
can be made realizable by introducing a positive time delay into the system . 
 

 
 

Figure 2.15 Signals associated with causal system. 
 
3.Time-invariant and time-varying systems : 
If the input x(t – t0) produces a response y(t – t0) where t0 is any real constant, 
the system is called a time-invariant system. 
If the above condition is not satisfied, the system is called a time-varying 
system. 
A system is called a linear time-invariant (LTI) system if the system is linear 
and time-invariant. 

 

 
 

Figure 2.16 Time-invariant system. 
 
Classification of signals and systems will help us in finding a suitable 
mathematical model for a given physical process that is to be analyzed. 
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Impulse Response : 
 
The impulse response h(t) of an LTI system is defined as the response of the 
system when the input signal x(t) is a delta function δ(t). The output y(t) of an 
LTI system can be expressed as the convolution of the input signal x(t) and the 
impulse response h(t) of the system, i.e., 

 

                     
 
For a causal LTI system : 

               
 
Transfer Function : 
 
In the frequency domain, the Fourier transform of y(t) = h(t) * x(t) is : 
                         Y(f) = H(f) X(f)   
where H(f) is the Fourier transform of h(t). H(f) is called the transfer function 
or frequency response of the LTI system. 
 
 Example 2.9 : An RC circuit is shown in Figure 2.17 , using Kirchhoff’s                     
voltage  law, we get : 
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The transfer function of the RC circuit is: 
 

  
and the impulse response is : 
 

                 
 

                             
 

Figure 2.17 Characteristics of an RC circuit. 
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Consider the input signal x(t) = δ(t). The Fourier transform of x(t) is  
 

               and  Y(f) = H(f).  
 X(f) = 1 implies equal amplitude at all frequencies. It is equivalent to exciting 
the system with all frequencies simultaneously. 
Rather than applying a sinusoidal signal and varying its frequency continuously 
to obtain H(f), a technique to measure H(f) is as follows: 
1. Excite the system with x(t) = δ(t). 
2. Measure y(t) = h(t). 
3. Find  : 

                 
 
In general, H(f) is a complex function of frequency. In polar form, H(f) can be 
expressed as   H(f) = |H(f)|  ejθ(f) 

From our earlier study of the properties of Fourier transform, we have seen that 
if h(t) is real, 
       H(-f) = H*(f)  
       |H(-f)| = |H(f)|  
       θ(-f) = -θ(f)  
where H*(f) is the complex conjugate of H(f). If x(t) and y(t) are real and H(f) 
is the transfer function of a LTI system, we can obtain the following results. 
Let x(t) and y(t) be the input and output energy signals of a LTI system. The 
energy spectral densities of x(t) and y(t) are Exx(f) = |X(f)|2 and  
Eyy(f) = |Y(f)|2, respectively. 
 Since Y(f) = H(f) X(f), we have 
Eyy(f) = |H(f)|2 Exx(f)  
Eyy(f) = H*(f)H(f) Exx(f)  
 
Let x(t) and y(t) be the input and output power signals of a LTI system. Also, 
let xT(t) and yT (t) be the truncated signals of x(t) and y(t), respectively, where 

         
  

 
and 
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xT(t) and yT(t) are energy signals as long as T is finite. The power spectral 
densities of x ( t ) and y ( t ) are : 

              
and    

           , respectively.  
Since Y(f) = H(f) X(f), we have 
Pyy(f) = |H(f)|2 Pxx(f)  
Pyy(f) = H*(f)H(f) Pxx(f)  
 
We can also obtain the relationship between the input and output auto-
correlation functions of a LTI system. Since the energy/power spectral density 
and the auto-correlation function are Fourier transform pairs, the inverse 
Fourier transform of Eyy(f) or Pyy(f) is : 

                   
where Rxx(τ ) and Ryy(τ ) are the auto-correlation functions of x(t) and y(t) , 
respectively. 

 
Figure 2.18 Input and output relationships of linear system. 
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Distortionless Transmission : 
 
In communication systems, a distortionless transmission is often desired. This 
implies that the output signal y(t) is given by : 
   y(t) = K x(t – td) 
where K is a constant and td is a time delay. The Fourier transform of  y(t) is : 
 

           
 where 
 

   
 

 
 

Figure 2.18 Waveforms and spectra associated with distortionless transmission. 
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Classification of Filters 
 
1. Ideal Low-Pass Filter. 
The transfer function of an ideal low-pass filter is defined by: 

              
 

                       
 

Figure 2.19 Frequency response of an ideal LPF. 
The bandwidth of an ideal low-pass filter is equal to fc. 
 
2. Ideal High-Pass Filter. 
The transfer function of an ideal high-pass filter is defined by : 
 

             or 

           
 

 
 

Figure 2.20 Frequency response of an ideal HPF. 
The bandwidth of an ideal high-pass filter is not defined, or infinite. 
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3. Ideal Bandpass Filter. 
The transfer function of an ideal bandpass filter is defined by: 

 

         
 

 
 

Figure 2.21 Frequency response of an ideal BPF. 
The bandwidth of an ideal bandpass filter is equal to fc2 – fc1. 
 
4. Ideal Bandstop Filter. 
The transfer function of an ideal bandstop filter is defined by: 
 

           or 

         
 

 
 

Figure 2.22 Frequency response of an ideal BSF. 
The bandwidth of an ideal bandstop filter is not defined, or infinite. 
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Concept of Non-Ideal or Practical Filter (System) Bandwidth 
 
A common definition of a non-ideal filter’s bandwidth is the 3dB bandwidth. 
For low-pass filters, the bandwidth is defined as the positive frequency at 
which the amplitude spectrum |H(f)| drops to a value equal to |H(f)|/√ 2 . For 
bandpass filters, the bandwidth is defined as the difference between the 
frequencies at which the amplitude spectrum |H(f)| drops to a value equal to 
|H(f0)|/√ 2 , where H(f0) is the peak value of |H(f)|. 
 
 
 

 
 
 

Figure 2.23  Non-ideal filter bandwidth. 
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MODULATION  

 
 
Modulation is a process by which some parameter (amplitude, 
frequency or phase)   of a carrier signal is varied in accordance with a 
message signal. The message signal is called a modulating signal. 
A carrier signal, in analog modulation, usually a simple sine wave, 
contains no information in itself. This gives us three possibilities: 
 
•  Amplitude modulation (AM), where the amplitude or strength of the    

carrier is varied. 
 
•  Frequency modulation (FM), where the frequency of the carrier is     

varied. 
 
•  Phase modulation (PM), where the phase of the carrier is varied. 
    It actually turns out that FM and PM are very close relatives.  

  
Reasons of modulation: 
 
♦ Match the signal to the channel characteristics and increase the 

efficiency of information transmission.  
♦ Shift the frequency band occupied by the message signal.  
♦ Reduce the relative bandwidth.  
♦Separate the signals in the frequency domain.  
♦ Less sensitivity to channel distortion.  
 
Demodulation: 
 
It is the process of separating the original message (base-band) signal 
from the noisy and distorted received modulated carrier signal . 
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3. Amplitude Modulation 

 
It is defined as the process of varying the amplitude of a sinusoidal 
carrier wave in synchronism with , and in direct proportion , to the 
amplitude of a modulating signal . 
 
The unmodulated carrier signal is given as : 
     s(t)= A cos 2π fct 
A sinusoidal  modulated ( band-pass) carrier signal is represented by: 
   sc(t) = A(t) cos θ(t)  
 
where A(t) is the envelope and θ (t) = ω ct + φ (t) = 2π fct + φ (t). 
φ (t) is called the instantaneous phase deviation of sc(t) and fc is the 
carrier frequency. For amplitude modulation, we can write 
     
 sc (t) = A(t) cos 2π fct  
 
where A(t) is linearly related to the modulating signal m(t). A(t) is 
called the instantaneous amplitude of sc(t) and amplitude modulation 
is also referred to as linear modulation. Depending on the relationship 
between m(t) and A(t), we have the following types of amplitude 
modulation schemes: 
 
- Normal amplitude modulation (AM) . 
- Double-sideband (DSB) modulation . 
- Single-sideband (SSB) modulation .    
-Vestigial-sideband (VSB) modulation . 
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Normal Amplitude Modulation (AM) : 
 
A normal amplitude-modulated signal is given by: 
 

          
 
where A is a constant and m(t) is the modulating signal.   
 
The modulation index m is defined as the ratio of the amplitude of the 
modulating signal to that of the unmodulated carrier. It is a value 
between 0 and 1 which describes the “degree of modulation” of the 
carrier. If m = 0 there is no modulation, while  m = 1 is the maximum 
modulation that can occur without distortion.  
Figure 3.1 shows normal AM signals for various values of modulation 
index. Clearly, the envelope of the modulated signals has the same 
shape as m(t) when m < 1. When m > 1, the carrier signal is said to be 
over- modulated and the envelope is distorted. 
 
If   m(t) = Em cosωmt , and  ωm =2πfm . 
      A(t) = A+ Em cosωmt  
      sc(t) = A ( 1+ m cosωmt ) cos ωct   
             =  A cos ωct  + m A cosωmt  cos ωct   
              = A cos ωct  + 0.5 mA cos(ωc -ωm )t + 0.5 mA cos (ωc +ωm )t 
and   m  = Em / A .  
The total average power of normal AM signal is: 
           Pt = Pc + 0.25 m2 Pc + 0.25 m2 Pc  
               = Pc ( 1+ 0.5 m2 )   
where Pc =(Arms)2/ R is the power of the unmodulated carrier wave & 
          Ps = 0.5 m2 Pc     is the power of the upper and lower sidebands. 
For   100℅ modulation ,   m= 1 ,    Pt = 1.5 Pc    
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Figure 3.1 Normal AM signals for various values of modulation index 
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Spectrum of Normal AM Signals : 
 
For normal amplitude modulation, 
     
     sc (t) = [A + m(t)] cos 2πfct  
             = A cos 2πfct + m(t) cos 2πfc 
The Fourier transform of sc(t) is : 
      
  Sc(f) =  0.5 A[δ(f-fc) +δ(f+fc)] + 0.5 [M(f-fc) + M(f+fc)] 
 
Normal amplitude modulation simply shifts the spectrum of m(t) to the carrier 
frequency fc. The bandwidth of the modulated signal is 2 fm Hz, where fm  is the 
bandwidth of the modulating signal m(t). 
 

 
 

Figure 3.2 Spectrum of normal AM signal. 
 
The efficiency η of a normal AM signal is defined as :  
 

                  
where Ps is the power carried by the sidebands and Pt is the total 
power of the normal AM signal. 
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Generation of Normal AM Signals : 
 
A process of generating a normal AM signal is shown in Figure 3.3. 
This type of modulation can be achieved by using a non-linear device, 
such as a diode .This is shown in Figure 3.4 . 
 

 
 

Figure 3.3 Generation of normal AM signal. 
 

 
 

Figure 3.4 Amplitude modulator using a diode. 
 
Let the input-output characteristic of a diode be approximated by a 
power series : 
           vo (t) = a vi(t) + b vi

2 (t) 
where a & b are constants and  
            vi(t) = cos 2πfct + m(t) 
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Hence : 
     vo(t) = a[cos 2πfct + m(t)] + b[cos 2πfct + m(t)]2 

             = a m(t) + b cos2 2πfct + b m(t)2 +  
                a cos 2πfct + 2b m(t) cos 2πfct 
 
If we pass the signal vo(t) through a band- pass filter centered at ± fc , 
we obtain  
             v'o(t) = [a + 2b m(t)] cos 2πfct  
                      = 2b[A + m(t)] cos 2πfct  
where A = a /2b . We generate a normal AM signal. 
A normal amplitude-modulated signal can also be obtained by 
multiplying m(t) by a periodic  signal s(t). The modulator is called a 
switching modulator. If we take a periodic rectangular waveform s(t) 
of period Tc = 1/fc ,  amplitude Am ,  and pulse width τ , the 
trigonometric Fourier series of s(t) is : 
 

            
where co = Amτ     and 
 

              
 
The corresponding complex Fourier series is : 
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Figure 3.5 (a) A periodic rectangular waveform, and (b) its line spectrum. 
If the input signal is : 
             vi(t) = cos 2πfct + m(t), 
 the output of a switching modulator is : 
              vo(t) = vi(t) s(t)  
                      = [cos 2πfct + m(t)] s(t) 
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vo(t) consists of a dc term, the component m(t), and an infinite number 
of normal AM signals at carrier frequencies fc, 2fc, 3fc, ... If we pass 
the signal vo(t) through a band-pass filter centered at ± fc, the filtered 
signal is : 

           
 
where A =( c0 + c2) / 2 c1 . That is, we obtain a normal AM signal. 
 
Demodulation of Normal AM Signals: 
 
The process of recovering the message signal from the modulated 
signal is called demodulation or detection. Two basic methods are 
available : 
 
1.Envelope Detection : 
In this method, an envelope detector is used to recover the message 
signal. An envelope detector consists of a diode and a resistor-
capacitor combination. This is shown in Figure 3.6. 
 
 

 
 

Figure 3.6 Envelope detector. 
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During the positive half-cycle peaks of the modulated signal, the 
diode is forward biased, and the capacitor charges up to the peak value 
of the modulated signal. As the modulated signal falls from its 
maximum, the diode turns off and the capacitor discharges through the 
resistor. The process repeats in this way. For proper operation, the 
discharge time constant RC must be chosen properly. 
 
2.Synchronous (Coherent) Detection : 
 
Here, a product detector is used to convert the band-pass signal to 
base-band. This is shown in Figure3.7. 
 

 
 

Figure 3.7 Synchronous detector. 
 
At the receiving end, the band-pass signal is multiplied by a locally 
generated carrier signal   cos(2πfct + φ0 ), 
 where φ0 is an initial phase. The output of the multiplier is 
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If we suppress the first term by a low-pass filter, we get 
             y(t) = 0.5Acos φ0 + 0.5 m(t) cos φ0  
 
It can be seen that we can recover the component m(t) if the initial 
phase φ0 is constant and small.  
Suppose that the local carrier signal is : 
    
                   cos[2π (fc + Δ f)t], 
 
 The multiplier output becomes : 
       
              x(t)  = [A + m(t)] cos 2πfct cos[2π(fc + Δf)t] 
                     = 0.5[A + m(t)] [cos 2πΔf t + cos 2π(2fc +Δf)t] 
                     = 0.5[A + m(t)] cos 2π(2fc +Δf)t + 
                      0.5Acos 2πΔf t + 0.5m(t)cos 2πΔf t  
 
If we suppress the first term by a low-pass filter, we get 
    
          y(t) = 0.5Acos 2πΔf t + 0.5m(t)cos 2πΔf t 
 
We cannot recover the component m(t) unless the frequency drift Δf is 
zero. Therefore, the local carrier must not only be of the same 
frequency but must be synchronized in phase with the carrier signal. If 
the carrier shifts in frequency or phase, the resultant signal is distorted 
or attenuated. Synchronous detection is sometimes called coherent 
detection. 
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Double-Sideband Modulation  (DSB) : 
 
A normal amplitude-modulated signal is given by : 
 
       sc(t) = [A + m(t)] cos 2πfct 
 
For double-sideband (DSB) modulation, A = 0 and 
        sc(t) = m(t) cos 2πfct 
The Fourier transform of sc(t) is 
     
       Sc(f) = 1/2 [M(f-fc) + M(f+fc)]  
 
Figure 3.8 shows the waveforms and spectra associated with a DSB signal. 
Clearly, the envelope of the modulated signal does not have the same shape as 
m(t). As with AM, DSB modulation shifts the spectrum of m(t) to the carrier 
frequency fc. The bandwidth of the modulated signal is 2 fm Hz, where fm is 
the bandwidth of the modulating signal m(t). 

 
 
 

Figure 3.8 Waveforms and spectra associated with DSB signal. 
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Generation of DSB Signals : 
 
The process of generating a DSB signal is shown in Figure 3.9 . 
DSB modulation can be achieved by using non-linear devices, such as a diode. 
This is shown in Figure 3.10 . 

  
 

  
  

Figure 3.9 Generation of DSB signal. 
  

  

  
  
  

Figure 3.10 A single-balanced modulator. 
 
Let the input-output characteristic of a diode be approximated by a power 
series : 
 
       vo(t) = a vi(t) + b vi

2(t)  
 
where a, b are constants. Consider the diode D1 in the upper portion of the 
circuit shown in Figure 3.10 . The input voltage to the diode D1 is 
 
      vi,1(t) = vi(t) = cos 2πft + m(t)  
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let the output voltage of the diode be  
 
     vo,1(t) = vo(t),   then , we have : 
    vo,1(t) = a[cos 2πfct + m(t)] + b[cos 2πfct + m(t)]2 

                = a m(t) + bcos2 2πfct + b m(t)2 + 
                   acos 2πfct + 2b m(t) cos 2πfct 

 
Now, consider the diode D2 in the lower portion of the circuit shown in 
Figure(3.10). The input voltage to the diode D2 is : 
  
    vi,2(t) = vi(t) = cos 2πfct - m(t)  
 
and let the output voltage of the diode be  
    
      vo,2(t) = vo(t),   then we have 
        vo,2(t) = a[cos 2πfct - m(t)] + b[cos 2πfct - m(t)]2 

                    = -a m(t) + bcos2 2πfct + b m(t)2 + 
                        acos 2πfct - 2b m(t) cos 2πfct  
Hence , 
  
      vo(t) = vo,1(t) – vo,2(t) = 2a m(t) + 4b m(t) cos 2πfct  
 
If we pass this signal through a bandpass filter centred at  ± fc, we obtain 
 
       v'o(t) = 4b m(t) cos 2πfct  
 
That is, we generate a DSB signal. It can be seen that the circuit is balanced 
with respect to the carrier signal s(t); however, the modulating signal m(t) still 
appears at the output of the second transformer T2. For this reason, the 
modulator is called a single-balanced modulator. 
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From our earlier study of normal AM, multiplication of a signal by a periodic  
signal involves switching the signal m(t) on and off periodically. This can be 
accomplished by switching elements controlled by the carrier signal s(t). 
Figure 3.11 shows a single balanced shunt-bridge diode modulator, where 
diodes D1, D2 and D3, D4 are matched pairs. 
 

 
 

Figure 3.11 A single-balanced shunt-bridge diode modulator. 
 

 During the positive half-cycle of s(t), terminal c is positive with respect to d, 
so all the diodes conduct. Terminals a and b have the same potential and are 
effectively shorted. vo(t) is zero. During the negative half-cycle of s(t), terminal 
c is negative with respect to d, all the diodes are open. 
 vo(t) = vi(t).   m(t) is effectively multiplied by a non-negative periodic signal. 
Therefore, the component m(t) appears at the input to the bandpass filter. If we 
pass the signal vo(t) through a bandpass filter centred at ± fc, we generate a 
DSB signal. 

 
A DSB signal can also be obtained by multiplying m(t) by any periodic  signal 
s(t). The modulator is called a switching modulator.  
If we take a periodic square waveform s(t) of period Tc = 1/fc, amplitude ±Ac/2, 
and pulse width of Tc, the trigonometric Fourier series of s(t) is : 
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where  

                 
 

The corresponding complex Fourier series is: 
 

                  
 
  

 
 

 
 
 

 Figure 3.12 (a) A periodic square waveform, and (b) its line spectrum. 
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If the input signal is vi(t) = m(t), the product of vi(t) and s(t) is : 
 

               
 
vo(t) consists of an infinite number of DSB signals at carrier frequencies fc, 2fc, 
3fc, ... If we pass the signal vo(t) through a bandpass filter centred at ± fc, the 
filtered signal is : 

                      
  
That is, we obtain a DSB signal. Figure 3.13 shows the waveforms and spectra 
associated with a switching modulator. 

  

 
 

Figure 3.13 Waveforms and spectra associated with a switching modulator. 
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It is possible to design a balanced modulator such that the input to the bandpass 
filter does  not contain the message signal m(t) or the carrier signal s(t). A 
circuit balanced with respect to both input signals is called a double-balanced 
modulator. Figure 3.14 shows a double-balanced modulator, known as a ring 
modulator . 
 

 
 

Figure 3.14 A double-balanced ring modulator. 
  

During the positive half-cycle of s(t), diodes D1 and D3 conduct, and D2 and D4 
are open. Terminal a is connected to c, terminal b is connected to d, and vo(t) is 
proportional to m(t). During the negative half-cycle of s(t), diodes D1 and D3 
are open, and diodes D2 and D4 are conducting. Terminal a is connected to d, 
terminal b is connected to c, and vo(t) is proportional to -m(t).   
m(t) is effectively multiplied by a sinusoidal carrier waveform. Therefore, the 
components m(t) and s(t) do not appear at the input to the bandpass filter. If we 
pass the signal vo(t) through a bandpass filter centred at ± fc, we generate a 
DSB signal. 
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Demodulation of DSB Signals : 
  

Since the envelope of the modulated signal does not have the same shape as 
m(t), an envelope detector cannot be used to recover the message signal. 
Demodulation of DSB signals can be accomplished by using a synchronous 
detector. This is shown in Figure 3.15 . 

  

 
Figure 3.15 Synchronous detector. 

Let sc(t) be the input signal to the synchronous detector. At the receiving end, 
the bandpass signal is multiplied by a locally generated carrier signal cos 2πfct, 
which is in synchronism with the transmitted carrier signal. The output of the 
multiplier is : 
         x(t) = m(t) cos 2πfct cos 2πfct 
                    = 0.5 m(t) + 0.5m(t) cos 4πfct 

  
If we suppress the last term by a low-pass filter, we get : 
            y(t) = 0.5m(t) 
That is, we can recover the component m(t). If the carrier signal shifts in 
frequency or phase, the resultant signal is distorted or attenuated. 

  
For the demodulation of a DSB signal, we can use a squaring loop to generate a 
local carrier signal. Figure 3.16 shows a carrier-recovery squaring loop for a 
DSB signal . 
However, the squaring loop has a disadvantage: there is a 180º phase 
ambiguity. If the transmitted carrier signal is shifted by 180º, the demodulated 
signal is -m(t). The demodulated signal is inverted. To remove the phase 
ambiguity, we can send a known test signal or use differential coding and 
decoding. 



 

61 
 

 
 

Figure 3.16 Carrier-recovery squaring loop for DSB signal. 
Quadrature Amplitude Modulation (QAM) :  
 
We have seen that DSB signals require a transmission bandwidth equal to 
twice the bandwidth of the message signal m(t). To increase the transmission 
bandwidth efficiency, it is possible to send two DSB signals using carriers of 
the same frequency but in phase quadrature. Both modulated signals occupy 
the same frequency band. Yet they can be separated at the receiver by 
synchronous detection using two local carriers in phase quadrature. The 
technique is known as Quadrature Amplitude Modulation (QAM) or 
quadrature multiplexing and the arrangement is shown in Figure 3.17 . 
 

 
 

Figure 3.17 A QAM transmitter and receiver. 
 
 
A QAM signal is given by : 

  
        sc(t) = m1(t) cos 2πfct + m2(t) sin 2πfct 
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At the receiving end, the modulated signal is multiplied by two carriers in 
phase quadrature. 
The signals at the outputs of the multipliers are : 
 
                   x1(t) = 2 sc(t) cos 2πfct 
                           = m1(t) + m1(t) cos 4πfct + m2(t) sin 4πfct  
and 
                  x2(t) = 2 sc(t) sin 2πfct 
                          = m2(t) – m2(t) sin 4πfct + m1(t) sin 4πfct  
 If we suppress the high-frequency components by low-pass filters, we get 
                y1(t) = m1(t)  
and 
               y2(t) = m2(t)  

  
That is, the desired outputs are obtained. Supposing that the local carrier signal 
is  cos (2πfct + φ0),  then the multiplier output in the upper portion of the 
circuit becomes : 
           x1(t) = 2 sc(t) cos (2πfct + φ0) 
                   = m1 (t)cos φ0 + m1(t)cos (4πfct + φ0) - 
                      m2 (t)sin φ0 + m2(t) sin (4πfct + φ0)  
If we suppress the second and the last terms by a low-pass filter, we get 
          y1(t) = m1(t)cos φ0 + m2(t)sin φ0  
The desired signal m1(t) and the unwanted signal m2(t) appear in the upper 
portion of the circuit. Also, it can be shown that y2(t) contains the desired 
signal m2(t) and the unwanted signal m1(t). Modulated signals having the same 
carrier frequency now interfere with each other. This is called cochannel 
interference and must be avoided . 
Worse problems arise when the local carrier frequency is in error. Therefore, 
the local carrier must not only be of the same frequency but must be 
synchronised in phase with the carrier signal. A slight error in the frequency or  
 
the phase of the local carrier signal will not only result in loss and distortion of 
signals, but will also lead to interference. 
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Quadrature multiplexing is used in colour television to multiplex the signals 
which carry the information about colours . 
 
Frequency Division Multiplexing (FDM) : 
 
One of the basic problems in communication engineering is the design of a 
system which allows many individual signals from users to be transmitted 
simultaneously over a single communication channel. The most common 
method is to translate individual signals from one frequency region to another 
frequency region. Suppose that we have several different signals of the same 
bandwidth. If we translate each one of the signals to a different frequency 
region such that the translated signal spectra do not overlap each other, then all 
these signals can now be transmitted along a single communication channel. At 
the receiving end, the signals can be separated and recovered. We now have a 
frequency multiplexed system. Such a multiplexing technique is called 
frequency division multiplexing (FDM). Frequency translation can be 
ccomplished by multiplying a low-frequency modulating signal with a high-
frequency sinusoidal carrier signal. Figure 3.18 shows the transmitter, the 
receiver, and the spectrum of a 5-user FDM system with carrier frequencies 
 fc1 < fc2 < ... < fc5 . 
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Figure 3.18 FDM system. 
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 Single-Sideband and Vestigial-Sideband Modulations : 
 
We have seen that both normal AM and DSB signals require a transmission 
bandwidth equal to twice the bandwidth of the message signal m(t). Since 
either the upper sideband (USB) or the lower sideband (LSB) contains the 
complete information of the message signal, we can conserve bandwidth by 
transmitting only one sideband. The modulation is called single-sideband (SSB) 
modulation.  
 
Generation of SSB Signals : 
 
There are two common methods to generate a single-sideband signal. 
1- Filter Method : 
 
In this method, a balanced modulator is used to generate a DSB signal, and the 
desired sideband signal is then selected by a bandpass filter for transmission. 
Figures 3.19 and 3.20 show the generation of a SSB signal using the filter 
method, and the spectra associated with it. 
 
The technique is suitable for message signals with very little frequency content 
down to dc and hence does not require sharp filter cut-off characteristics. 

 
 
 
 

 
 

Figure 3.19 Generation of SSB signal using filter method. 
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Figure 3.20 Spectra associated with SSB signal using filter method. 
 
2- Phasing Method : 
 
A single-sideband signal is given by : 
 

 

 
 
  
Figures 3.21 and 3.22 show the generation of a SSB signal using the phasing 
method, and the spectra associated with it. 
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Figure 3.21 Generating SSB signal using phasing method. 
 
 

 
 

Figure 3.22 SSB spectra expressed in terms of M+(f) and M-(f). 
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Demodulation of SSB Signals : 

 
Demodulation of SSB signals can be accomplished by using a synchronous 
detector as used in the demodulation of normal AM and DSB signals. This is 
shown in Figure 3.23 . 
 

 

 
 

Figure 3.23 Synchronous detector. 
 

At the receiving end, the bandpass signal is multiplied by a locally generated 
carrier signal cos 2πfct, which is in synchronism with the transmitted carrier 
signal. The output of the multiplier is : 

 
 

 
 

If we suppress the last two terms using a low-pass filter, we get : 
           y(t) = 0.5 m(t) 

 
That is, we can recover the component m(t). If the carrier signal has phase or 
frequency errors, the recovered message is distorted. 
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Vestigial Sideband (VSB) Modulation : 
 

Vestigial sideband modulation is a compromise between DSB and SSB 
modulations. It relaxes the sharp cutoff requirement of a SSB signal by 
retaining a trace of the other sideband in the transmitted signal. Typically, the 
bandwidth of a VSB modulated signal is about 1.25 times that of the 
corresponding SSB modulated signal. It is commonly used for transmission of 
video signals in commercial television broadcasting. Figures 3.24 and 3.25 
show the generation of a VSB signal, and the spectra associated with it. 

 
Figure 3.24 VSB modulator. 

 

 
 

Figure 3.25 Spectra associated with VSB signal. 
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By inspection of Figure 3.25 , the Fourier transform of a VSB modulated signal 
sc(t) is : 
            Sc(f) = 1/2 [M(f-fc) + M(f+fc)]H(f)  
 
where H(f) is the transfer function of the bandpass filter. 
 
Demodulation of VSB Signals : 
 
Demodulation of VSB signals can be accomplished by using a synchronous 
detector. Let sc(t) be the input signal to the synchronous detector. At the 
receiving end, the bandpass signal is multiplied by a locally generated carrier 
signal cos 2π fct, which is in synchronism with the transmitted carrier signal. 
The output of the multiplier is : 
           x(t) = sc(t) cos 2πfct  
 
and the Fourier transform of x(t) is : 
  
          X(f) = 1/2 [Sc(f-fc) + Sc(f+fc)]  
Substituting , we get 
             X(f) = 1/2{[ 1/2 [M(f-2fc) + M(f)]H(f-fc)] + 
                      [ 1/2 [M(f) + M(f+2fc)]H(f+fc)]}  
 
We can suppress the frequency components at ± 2fc by a low-pass filter and we 
get : 
            Y(f) = 1/4 M(f)[H(f-fc) + H(f+fc)]  
 
For distortionless detection, we must have 
 
            H(f-fc) + H(f+fc) = K,   |f| ≤ B 
 
where K is a constant and B is the bandwidth of the message signal.  
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 The superheterodyne  receiver : 
 
Most modern radio and TV receivers (whether for AM or FM bands, other 
frequency ranges, or other modulation methods) use the superheterodyne 
(“superhet” for short) technique. This enables important signal processing 
operations, such as demodulation, to be done at a more convenient lower 
frequency, rather than at the original high frequency of the incoming signal, as 
well as providing other advantages. 
A block diagram of a superheterodyne receiver for AM is shown in Fig. 3.26.  
 
 
 

 
  

Fig 14-6 Diagram of a superheterodyne receiver for AM. 
 

The signal is mixed with a local oscillator (LO) signal and shifted down to an 
intermediate frequency (IF) before demodulation. 
 
•  First, the received (modulated) signal is picked up by an antenna and passed 

through a tuned amplifier –that is, one which also acts as a bandpass filter as 
well as amplifying, to roughly restrict its frequency range. 

This first part of the receiver is referred to as the radio frequency (RF) stage. 
The filtering has the effect of attenuating strong signals at other frequencies 
which might interfere with or overload the receiver’s amplifiers or mixer. To 
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select different stations, the tuning (that is, the centre frequency) of the 
bandpass filter is varied. 

 
•  The next stage is the mixer, where the signal is shifted down in frequency. In 

this stage, the signal from a separate oscillator (called the local oscillator, or 
LO) is multiplied by the incoming signal to produce sum and difference 
frequencies. The LO frequency is adjusted so that the difference frequency 
is always exactly 455 kHz. This is termed the intermediate frequency (IF) 
and is a standard frequency for AM receivers. (For AM, 470 kHz is also 
sometimes used; for FM receivers the IF is at 10.7 MHz, while in TV 
receivers it is around 30 MHz). 

For example, if the incoming signal is at 1 MHz (1000 kHz), then an LO 
frequency of 1455 kHz (= 1000 + 455) or 545 kHz (= 1000-455) will produce 
an IF signal at 455 kHz; usually the higher LO frequency is used. As stations at 
different frequencies are selected by tuning the RF stage, the frequency of the 
LO is simultaneously varied, so as to keep the difference frequency at 455 kHz. 
 
•  This signal is then passed through an IF amplifier which is more precisely 

tuned to restrict the range of frequencies. Using a standard frequency for the 
IF means that no matter what the frequency of the original incoming (RF) 
signal, it is always processed in pretty much an identical fashion. Note that 
at this stage the signal still looks like an ordinary AM signal –that is, it has a 
carrier (but now at 455 kHz) and two sidebands. 

 
•  The amplified IF signal is then passed to the demodulator (detector), which 

recovers the original audio information from the carrier. 
 
•  An additional dc voltage derived from the detector is also used to provide a 

feedback voltage for automatic gain control, which operates by varying the 
gain of the IF and/or RF amplifiers, thus keeping the average signal level to 
the demodulator approximately constant. 

 
•  Finally, an audio amplifier raises the power of the recovered signal to a 

sufficient level to drive a loudspeaker. 
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Example 3.1:  
The AM broadcast band occupies approximately 500 to 1600 kHz. An AM 
receiver uses an IF frequency of 455 kHz. It is tuned to a station, and its LO 
frequency is set to 1365 kHz. On what frequency is the station broadcasting? 
 
Answer:  
The IF must be at the sum or difference of the RF and LO frequencies. 
 Hence, the station frequency must be at either  
     1365 + 455 = 1820 kHz, or  
      1365 - 455 = 910 kHz, 
 in order to give an IF of 455 kHz. Since 1820 kHz is not in the AM band, the 
station frequency must be 910 kHz. 

 
Example 3.2: 
 An AM receiver uses an IF frequency of 455 kHz. A radio station at 1200 kHz 
modulates its carrier with a maximum audio frequency of 9 kHz. 
(a) What are the highest and lowest frequency components that are actually 

broadcast by the station? 
(b) What are the highest and lowest frequencies that must be passed without 

much loss by the receiver’s IF amplifier to recover the original audio 
signal with full bandwidth? 

 
Answer:  
 (a) The highest and lowest frequencies broadcast will correspond to the 

“outside edges” of the two AM sidebands. These will be at : 
           1200 - 9 = 1191 kHz     and  
           1200 + 9 = 1209 kHz. 
(b) The original carrier frequency will be shifted down to the IF frequency of 

455 kHz by the mixer. Hence the highest and lowest corresponding 
frequencies which must be passed by the IF amplifier are: 

          455 - 9 = 446 kHz          and   
         455 + 9 = 464 kHz. 
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4. Angle Modulation 
 
Angle modulation encompasses phase modulation (PM) and frequency 
modulation (FM). The phase angle of a sinusoidal carrier signal is varied 
according to the modulating signal. In angle modulation, the spectral 
components of the modulated signal are not related in a simple fashion to the 
spectrum of the modulating signal. Superposition does not apply and the 
bandwidth of the modulated signal is usually much greater than the modulating 
signal bandwidth. 
Definitions 
A bandpass signal is represented by 
                sc(t) = A(t) cos θ(t)  
where A(t) is the envelope and θ (t) = ω ct + φ (t) = 2πfct + φ (t).  
For angle modulation, we can write : 
               sc(t) = A cos [2πfct + φ(t)] 
 where A is a constant and φ(t) is a function of the modulating signal. 
 φ(t) is called the instantaneous phase deviation of sc(t). 
The instantaneous angular frequency of sc(t) is defined as : 
                 ωi(t) = dθ (t ) / dt 
In terms of frequency, the instantaneous frequency of sc(t) is : 
 

               dt
tdfi
)(

2
1 θ
π

=
 

 

                       dt
tdfc
)(

2
1 φ
π

+=
 

                  

dt
td )(

2
1 φ
π    is known as the instantaneous frequency deviation. 

The peak (maximum) frequency deviation is : 
 

              ci ftf
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tdf −==Δ )(max)(
2
1max φ
π    
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Phase Modulation : 
 
For PM, the instantaneous phase deviation is proportional to the modulating 
signal mp(t): 
            φ(t) = kp mp(t)  
where kp is a constant. Thus, a phase-modulated signal is represented by 
           sc(t) = A cos [2πfct + kp mp(t)]  
Then ,the instantaneous frequency of sc(t) can be written as : 
 

            dt
tdm

kftf p
pci

)(
2
1)(
π

+=  

            
The peak (maximum) phase deviation is : 
 

         )(max tφφ =Δ  

                  )(max tmk pp=  
 
The phase modulation index is given by  : 
                   βp = Δφ 
 
Frequency Modulation : 
 
For FM, the instantaneous frequency deviation is proportional to the 
modulating signal mf(t) : 
 

       
)()( tmk

dt
td

ff=
φ

 

where kf is a constant, and 

     ∫
∞−

−∞+=
t

ff dmkt )()()( φττφ  

                
φ(- ∞) is usually set to 0. Thus, a frequency-modulated signal is represented by: 
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The instantaneous frequency of sc(t) can be written as : 

        
)(

2
1)( tmkftf ffci π

+=
 

Figure 4.1 shows the modulating signal mf(t), the instantaneous frequency fi(t), 
and the FM signal when a sawtooth signal is used as a modulating signal. 
 

 

 

 
Figure 4.1 Frequency modulation: (a) Modulating signal, (b) instantaneous 

frequency, and (c) FM signal. 
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The frequency deviation from the carrier frequency is: 
 

       )(
2
1)(

2
1)()( tmk

dt
tdftftf ffcid π

φ
π

==−=  

    
and the peak frequency deviation is : 
 

         dt
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2
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                )(max
2
1 tmk ffπ

=  

       
Generation of Angle-Modulated Signal : 
 
It can be seen from the previous equations that PM and FM differ only by a 
possible integration or differentiation of the modulating signal.  
Then we obtain : 
 

        dt
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and  
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If we differentiate the modulating signal mp(t) and frequency-modulate using 
the differentiated signal, we get a PM signal. On the other hand, if we integrate 
the modulating  signal mf(t) and phase-modulate using the integrated signal, we 
get an FM signal. 
Therefore, we can generate a PM signal using a frequency modulator or we can 
generate an FM signal using a PM modulator. This is shown in Figure 4.2. 
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Figure 4.2 Generation of (a) PM using a frequency modulator, and (b) FM 
using a phase modulator. 

 
 
Spectrum of an Angle-Modulated Signal : 
 
For angle modulation, 
           sc(t) = A cos [2πfct + φ(t)]  
and we can write : 
sc(t) = Re {Aej[2πf

c
t+φ(t)] 

 } = Re {Aej2πf
c
tejφ(t)} 

Expanding  ejφ(t)  in a power series yields : 
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It can be seen that the spectrum of an angle-modulated signal consists of an 
unmodulated carrier plus spectra of φ (t), φ 2(t), ..., and is not related to the 
spectrum of the modulating signal in a simple fashion. 
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Narrowband Angle Modulation : 
 

If max |φ(t)| << 1, we can neglect all higher-power terms of φ(t) in the last 
equation and we have a narrowband angle-modulated signal  : 
 

 
    sc(t) ≈ A[cos 2πfct - φ(t)sin 2πfct] 
 
For PM, 
    sc(t) ≈ A[cos 2πfct -  kp mp(t)sin 2πfct] …………..…(4-1) 
 
For FM, 

    ⎪⎭
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Narrowband Frequency Modulation : 
 
Because of the difficulty of analyzing general angle-modulated signals, we 
shall only consider a sinusoidal modulating signal. Let the modulating signal of 
a narrowband FM signal be : 
 
          mf(t) = am cos 2π fmt 
we have, 
 
 

 

                       tfmf πβ 2sin=  
 

where ,   βf = kf am /(2πfm). 
 βf  is called the frequency modulation index and βf  is only defined for a 
sinusoidal modulating signal.  
 
Differentiating φ(t) and substituting dφ (t )/dt into Δf , we have : 

tf
f
ak

t m
m

mf π
π

φ 2sin
2
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f

f
Δ
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where B = fm is the bandwidth of the modulating signal. Then, we have : 
 sc(t) = A cos (2πfct + βf sin 2πfmt)  
         = A[cos 2πfct cos (βf sin 2πfmt)- sin 2πfct sin (βf sin 2πfmt)] 
 
For       βf << π/2,  
 cos (βf sin 2πfmt) ≈ 1,   sin (βf sin 2πfmt) ≈ βf sin 2πfmt, and 

 
  
       sc(t) ≈ A[cos 2πfct - βf sin 2πfct sin 2πfmt] 

 
               ≈ Acos 2πfct -0.5βf A[cos 2π(fc-fm)t- cos 2π(fc+fm)t] 

 
               ≈ Re[ej2πfct(A -0.5 βfAe-j2πfmt+0.5βfAej2πfmt)] 

  
The bandwidth of the narrowband FM signal is 2fm Hz. 

 
In the AM case with sinusoidal modulating signal  : 
              m(t) = am cos 2πfmt, 

 
     sc(t) = [A + am cos 2πfmt] cos 2πfct 
     sc(t) = A cos 2πfct + 0.5am[cos 2π(fc-fm)t + cos 2π(fc+fm)t] 
     sc(t) = A cos 2πfct +0.5mA[cos 2π(fc-fm)t + cos 2π(fc+fm)t] 
     sc(t) = Re[ej2πfct(A + 0.5mA e-j2πfmt+ 0.5mA ej2πfmt)] 
 where the modulation index  : 

                      A
am m=

     
. 
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 Figure 4.3 shows the vector representation of a narrowband FM signal and an 
AM signal. 

 

 
 

Figure 4.3 Vector representation of (a) narrowband FM, and (b) AM. 
 

 
It can be seen that the resultant of the two sideband vectors in the FM case is 
always in phase quadrature with the unmodulated carrier, whereas the resultant 
of the two sideband vectors in the AM case is always in phase with the 
unmodulated carrier. The distinction and similarity between narrowband FM 
(or phase modulation) leads us to a commonly used method of generating 
narrowband angle-modulated signals. 
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Generation of Narrowband PM and Narrowband FM : 
 
The generation of narrowband PM and narrowband FM signals is easily 
accomplished in view of equations (4-1) & (4-2) . This is shown in Figure 4.4. 
 

 
 

Figure 4.4 Generation of (a) narrowband PM, and (b) narrowband FM. 
 

 
 

Figure 3.3 Generation of normal AM signal. 
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Wideband Frequency Modulation (WFM) : 
 
 Consider the angle-modulated signal  : 
          sc(t) = A cos (2π fct +  β sin 2π fmt) 
with sinusoidal modulating signal  
        m(t) = am cos 2π fmt. 
  It can be shown that sc(t) can also be written as : 

            tnffJAts mc
n

nc )(2cos)()( += ∑
∞

−∞=

πβ  

where : 

            
dxeJ nxxj

n ∫
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π
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π
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2
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The integral is known as the Bessel function of the first kind of the n-th order 
and cannot be evaluated in closed form. Figure 4.5 shows some Bessel 
functions for n = 0, 1, 2, 3, and 8. Clearly, the value of Jn(β) becomes small for 
large values of n. 

 
 

Figure 4.5 Bessel functions. 
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It can be shown that : 
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Therefore, we can write : 
 
     sc(t) = A{J0(β)cos 2πfct - 
              J1(β)[cos 2π(fc – fm)t - cos 2π(fc + fm)t ] + 
              J2(β)[cos 2π(fc - 2fm)t + cos 2π(fc + 2fm)t ] - 
             J3(β)[cos 2π(fc - 3fm)t - cos 2π(fc + 3fm)t ] + ...}….(4-3) 
                                                                                                                
Figure 4.6 shows the amplitude spectra of FM signals with a sinusoidal 
modulating signal and fixed fm. 
                       
 

 
 

Figure 4.6 Amplitude spectra of FM signals with sinusoidal 
 modulating signal and fixed fm. 
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Observations: 
 
1. The spectrum consists of a carrier component at fc plus sideband components 
     at      fc  ±  nfm     (n = 1, 2, ...). 
2. The number of sideband terms depends on the modulation index β . 
3. The magnitude of the carrier signal decreases rapidly as β increases. 
4. The amplitudes of the spectral lines depend on the value of Jn(β)  . 
5. The bandwidth of the modulated signal with a sinusoidal modulating signal 
    increases as β increases, and the bandwidth of the modulated signal is larger    
     than 2Δf. 

 
Figure 4.7 shows the amplitude spectra of FM signals with a sinusoidal 
modulating signal and a fixed peak frequency deviation Δf . Clearly, we get 
more and more spectral lines crowding into a fixed frequency interval as fm 
decreases. 

 
 

 
 

Figure 4.7 Amplitude spectra of FM signals with sinusoidal 
 modulating signal and fixed peak frequency deviation Δf. 

 
 
 



 

86 
 

 
Bandwidth of Angle-Modulation Signals : 
From equation (4-3), we observe that the spectrum consists of a carrier 
component at fc plus an infinite number of sideband components at  
         fc ± nfm     (n = 1, 2, ...). 
 In fact, 98% of the normalized total signal power is contained in the 
bandwidth : 

 
         BT = 2(β + 1) B 
where β is either the phase modulation index or the frequency modulation 
index and B is the bandwidth of the modulating signal. The bandwidth of the 
angle-modulated signal with sinusoidal modulating signal depends on β and B. 
This is called Carson’s rule. It gives a rule-of-thumb expression and an 
easy way to evaluate the transmission bandwidth of angle-modulated signals. 
When β << 1, the signal is a narrowband angle-modulated signal and its 
bandwidth is approximately equal to 2B. 
 
Generation of Wideband FM : 
1-Indirect Method : 
 
In this method, a narrowband frequency-modulated signal is first generated 
using an integrator and a phase modulator. A frequency multiplier is then used 
to increase the peak frequency deviation from Δf to nΔf. Use of frequency 
multiplication normally increases the carrier frequency from fc to n fc. A mixer 
or double-sideband modulator is required to shift the spectrum down to the 
desired range for further frequency multiplication or transmission. This is 
shown in Figure 4.8 . 

 
 

Figure 4.8 Indirect method of generating WFM. 
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2-Direct Method : 
 
Here the carrier frequency is directly varied in accordance with the modulating 
signal. A common method used for generating direct FM is to vary the 
inductance L or capacitance C of a voltage-controlled oscillator 
(VCO). This is shown in Figure 4.9 . 
  

 
 

Figure 4.9 Direct method of generating WFM. 
 

The oscillator uses a high-Q resonant circuit. Variations in the inductance or 
capacitance of the oscillator will change its oscillating frequency. Assuming 
that the capacitance of the tuned circuit varies linearly with the modulating 
signal m(t), we have : 
 

           C = k m(t) + C0  
           C = ΔC + C0 
Where , 
          ΔC = k m(t) 

 
k is a constant and C0 is the capacitance of the VCO when the input signal to 
the oscillator is zero. The instantaneous frequency is given by : 

              

0
0 12

1
2

1

C
CLC

f

LC
f

i

i

Δ
+

=

=

π

π

 

 
 



 

88 
 

          

2
1

02
1

−

⎥
⎦

⎤
⎢
⎣

⎡ Δ
+=

C
Cff ci  

 
where the zero-input-signal resonance frequency is : 
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Although the change in capacitance may be small, the frequency deviation Δf 
may be quite large if the resonance frequency fc is large. We can alternatively 
vary the inductance to achieve the same effect. 
 
Advantage - Large frequency deviations are possible and thus less frequency 
multiplication is needed. 
 
Disadvantage - The carrier frequency tends to drift and additional circuitry is 
required for frequency stabilization. 
To stabilize the carrier frequency, a phase-locked loop can be used. This is 
shown in Figure 4.10 .  
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Figure 4.10 Direct method of generating WFM 
 with frequency stabilization. 
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 Angle Demodulation  

 
Review of Angle Modulation : 
Angle modulation encompasses phase modulation (PM) and frequency 
modulation (FM). 
We have seen that an angle-modulated signal can be represented by : 
            sc(t) = A cos θ(t)  
            sc(t) = A cos [2πfct+ φ(t)] 
where A is a constant,  
            θ (t) = 2πfct + φ (t),  
and fc is the carrier frequency. φ(t) is a function of the modulating signal m(t) 
and is given by : 
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The instantaneous angular frequency of sc(t) is defined as : 

              dt
tdti
)()( θω =  

In terms of frequency, the instantaneous frequency of sc(t) is : 
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Angle Demodulation : 
 
Demodulation of an angle-modulated signal requires a circuit that produces an 
output proportional to the instantaneous frequency fi(t) or the instantaneous 

frequency deviation dt
td )(

2
1 φ
π  of the input signal to the demodulator. 

 
Frequency Discrimination : 

 
Frequency discrimination is a frequency-to-amplitude conversion process. 
Consider an angle-modulated signal : 
 
             sc(t) = A cos θ(t)              .................................(4-4) 
 
where , 
            θ(t) = 2πfct + φ(t)    ..............................................(4−5) 
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If we differentiate equation (4-4), we get : 
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The signal is both amplitude- and angle-modulated. If we pass the signal to an 
envelope detector, we get : 
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Knowing the values of A, fc, kp and kf, we can compute the desired signal m(t) 
from y(t). Figure 4.11 shows the circuit for frequency demodulation. The 
differentiator followed by an envelope detector is called a frequency 
discriminator. For demodulation of PM signals, we simply integrate the output 
of a frequency discriminator. This yields a signal which is proportional to m(t). 
Figure 4.12 shows the circuit for phase demodulation. 
 
 

 
 

Figure 4.11 Frequency demodulation using a frequency discriminator. 
 

 
 

Figure 4.12 Phase demodulation using a frequency  
              discriminator  and an integrator. 
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In practice, channel noise and other factors may cause A to vary. If A varies, 
y(t) will vary with A. Hence, it is essential to maintain the amplitude of the 
input signal to the frequency discriminator. A hard limiter is usually used to 
eliminate any amplitude variations. A hard limiter is a device which limits the 
output signal to (say) +1 or -1 volt. 
Figure 4.13 shows the input-output characteristic of a hard limiter. 

 

 
 

Figure 4.13 Input-output characteristic of a hard-limiter. 
 

Zero-Crossing Detection : 
 

We have seen that a hard limiter is usually used to eliminate any amplitude 
fluctuation. The message signal must therefore be contained in the points 
where the angle-modulated signal crosses the zero voltage level. This produces 
a means of demodulating an angle-modulated signal. Consider the angle-
modulated signal as shown in Figure 4.14 . 

 
 

Figure 4.14 Zero-crossing determination. 
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Let t1 and t2 be two adjacent zero-crossing points, where t2 > t1. Integrating  
θ(t), we have : 
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but also , 
      θ(t2) - θ(t1) = π 
 
 
 
For fc >> B (the bandwidth of the message signal),  dm(t)/dt  for PM signals 
and m(t) for FM signals change much more slowly than fc . dm(t)/dt  and m(t) 
may be assumed constant in the interval t2 – t1. 
 We can write : 
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where , 
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Knowing the values of fc, kp and kf, the desired signal m(t) may be found by 
measuring the spacing between zero crossings in the interval t2 – t1. A detector 
utilizing this technique is called a zero-crossing detector. For demodulation of 
PM signals, we simply integrate the output of a zero-crossing detector. Again, 
this yields a signal which is proportional to m(t). 
In practice, we consider counting n number of zero-crossings in a time interval 
T, where : 

               B
T

fc

11
<<<<  

 
and B is the bandwidth of the message signal. This is shown in Figure 4.15. 
Then, the number of zero crossings in a time interval T is : 
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Figure 4.15 Counting intervals. 
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Armstrong-type indirect FM transmitter: 

 

 
 
The transmitter shown above operates at an unmodulated carrier frequency of 91.2MHz 
with a maximum-frequency deviation of 75 kHz . 
The transmitter is crystal-controlled , starting at the controlled carrier frequency of 
200kHz . 
There is a total frequency multiplication of 64 x 48 = 3072, so that the maximum 
modulation index at the multiplier input can be fixed at 0.5 radian. 
An injected frequency of 10.9 MHz is used to shift the carrier frequency down from 12.8 
to 1.9 MHz between multiplier sections. 
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